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Abstract. Consider a continuous distribution on [0,) with cdf F, survival

function F = 1-F and cumulative hazard function H = -LnF. For F NBUE it

is shown that the correlation coefficient between X nu F and H(X) is bounded

below by a/p, the coefficient of variation of F, while for F NWUE the

correlation coefficient is bounded below by P/o. Several applications of this

inequality and its generalizations are discussed, including Monte-Carlo simula-

tion of the renewal function, exponential approximation of DMRL distributions,

moment inequalities for record values and a variance inequality for random

event epochs in a homogeneous Poisson process.
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1. Introduction and Summary.

Consider a continuous distribution on [0,-), with cdf F, survival

function F - 1-F and cumulative hazard function H = -LnF. If X N F then

H(X) is exponentially distributed with mean 1. The random variable H(X)

measures lifetime by total hazard overcome until death, while X measures

lifetime in ordinary time units. Since H is an increasing function we know

that H(X) and X are positively correlated. The question of how positively corre-

lated arose naturally in Brown, Solomon and Stephens (1981) and Brown (1987) in

different contexts. In the former paper the asymptotic relative savings in

risk between two Monte-Carlo estimators of the renewal function was given by

the square of the correlation coefficient between X and H*. In Brown

(1987), a quantity closely related to the correlation coefficient was needed

to bound the distance between a DMRL (decreasing mean residual life) distribu-

tion and its stationary renewal distribution.

In this paper we show that for X NBUE (new better than used in expectation):

(1.1) p(XH(X)) > E

while for X NWUE (new worse than used in expectation):

(1.2) p(X,H(X)) > -

The 1Lie- bound on the correlation coefficient also aids in bounding the

expected waiting ti-e, E(S2-S1) , between the first Pnd second record values

corresponding to an i.i.d. sequence {Xi,i > 1} with Xi ^- F. Using (1.1)
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and (1.2) we show that for F NBUE:

2

(1.3) a2 < E(S2 -S 1 ) < a

and for F NWUE:

(1.4) < E(S 2 -S 1 ) < a.

The quantity E(S2-S1) represents the expected time to failure after the

first minimal repair, and is of interest in the study of maintenance policies.

In section 3.4 inequalities are derived for the moments of higher record

values. For example it is shown that if F is IFRA, and Sr  is the rth

record value then:

1k+r-l k k+r-l
(1.5) < ESr < ( k )ik

where = fxjdF(x).

In section 3.5 we show that if {Ti,i > 1} are the arrival epochs for a

homogeneous Poisson process with parameter X, and N is a stopping time, then

Var TN> X -2. We further show that among all distributions with failure rate

uniformly bounded above by X, the exponential distribution with parameter X

has the minimum variance for the kth record value, for k > 1.
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2. A Correlation Inequality.

Consider a non-negative random variable X with continuous cdf F.
* -l x tdtesainr

Denote by X a random variable with cdf G(x) = x f(t)dt, the stationary

renewal distribution corresponding to F. Let T denote a random variable

with distribution dFT(t) = tP- dF(t). T is distributed as the length of

the interval covering an arbitrary fixed point in a stationary renewal process

with interarrival time distribution F (Feller (1971) p. 371). Since the

backward recurrence time for a stationary renewal process is distributed as

G, we see that:

(2.1) T n, XIX > X

where X is independent of X.

Next, consider the record value process corresponding to F. We take an

i.i.d. sequence {Xi, i > 1} with Xi F and define S, = Xl

N2 = {min i:Xi X1}, S2 = XN 2, Nk = minfi:Xi>XN k-} Sk XNk k 3,4.

The sequence {Si. i > l} generates a non-homogeneous Poisson process with

EN(t) = -LnF(t) = H(t) (Shorrock (1972)). Note that:

(2.2) S2 % XIX > X'

where X' is independent of X with the same distribution.

We now derive a useful result. Two proofs are given, as each is

instructive.

Lemma 2.1. If F is NBUE (NWUE) then S2  is stochastically larger (smaller)

than T.
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St*

Proof 1. F NBUE is equivalent to X > X .Now Z(x) = xix > x is stochas-

tically increasing in x (Pr(Z(x) > t) =f(tVx)/-f(x), where a~h = max(a,b),

and is thus increasing in x) therefore S 2 = Z(X) is stochastically

larger than T = Z(X *) (see (2.1) and (2.2)). The NWU" case similarly follows.

Proof 2. Consider the record value process {Si,i > 11. If X is NBUE then

E(Sk Skl~s.,k)<~ thus {S -n.,n > 1} is a super-martingale.

Consider the stopping time N t+1,, which is one plus the number of record

values in [O,t]. Then:

(2.3) ESN+l < i1E(N +1) = pi(H(t)+l)

Define 6(t) =E(X-tlX> t) =p~)Ft. Then ES N + t+-6(t) so (2.3)

reduces to:

(2.4) t+6(t) < jj(H(t)+1)

Now:

(2.5) F S(t) =Pr(N(t) < 1) =(H(t)+l)F(t)

while:

(2.6) FT (t rT )=tlF(t) +G(t) F(t)[t+6(t)]

The result now follows from (2.4), (2.5) and (2.6). The NWUE is handled

analogously.
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Lemma 2.2. If F is NBUE then p(X,H(X)) > a/iJ. If F is NWUE then

p(X,H(X)) > li/a.

Proof. Note that dF s (t) = H(t)dF(t) while dF T~ W tPii dF(t). By

Lemma 2.1:

(2.7) ES 2 = E(XH(X)) > ET = p 2 /Vi

Now subtract P and divide by a on both sides of (2.7) and the NBUE result

follows.

Next, assume that X is NWUE. It follows from Lemma 2.1 that for any

increasing function k. (with the expectations existing):

(2.8) EX(S 2) = f Z(x)H(x)dF(x) < P 'JxR.(x)dF(x) =E9Z(T)

choose k(x) = H(x), then:

(2.9) EH 2(X) =2 < p1lE(XH(X))

From (2.9) the NWUE result easily follows.
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3. Applications.

3.1. Monte-Carlo estimation of the renewal function. Suppose we wish to

estimate M(t), the expected number of renewals in [O,t] for a renewal

process with interarrival distribution F, by Monte-Carlo simulation. An

obvious approach is to simulate N(t), the number of renewals in [O,t],

K times (Nl(t),...,NK(t)), and to estimate M(t) by the sample mean.

In Brown, Solomon and Stephens (1971) an unbiased estimator M (t) was

proposed and it was shown that as t - the asymptotic relative savings

in risk between M (t) and the estimator based on N(t) was given by

p 2(X,H(X)). Lemma (2.2) gives a lower bound on p and thus a lower bound

on the asymptotic relative savings in risk.

3.2. Exponential approximation of DMRL distributions. Consider a continuous

DMRL (decreasing mean residual life) distribution F on [0,-) with stationary

renewal distribution G. In Brown (1987) it is shown that:

(3.2.1) D*(F,G) = supIF(B)-G(B)I < 1-EH(X*)

where H -LnF, the cumulative hazard function, and X ' G. Now:

(3.2.2) ES2 = f(H(t)+l)F(t)dt = 1.+EH(X*)]

But F DMRL implies F NBUE, thus (3.2.2) and Lemma 2.1 give:

(3.2.3) ES2 = V[I+EH(X*)] t ET =2/p

thus:
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(3.2.4) EH(X*) > a21h2

From (3.2.1) and (3.2.4) we obtain:

(3.2.5) D *(F,G) < l-(a 21/P 2

The inequality (3.2.5) thus extends the result of Brown (1987) from F

IFR to F DMRL. Moreover it follows from (3.2.5), employing the methodology

of Brown (1987) that for F IMRL:

(3.2.6) supIF(t)-e-t/Ip < l(02/P2)

Thus if F is DMRL with coefficient of variation close to 1, then

F is approximately exponential.

3.3. The second record value. Consider S2-S 1  the interarrival time between

the first and second record values in a record value process corresponding to

F (equivalently the interarrival time between the first and second events in

a non-homogeneous Poisson process with EN(t) = H(t) = -LnF(t)). It follows
a

from Lemma 2.1 that F NBUE implies:

u2 o2
(3.3.1) E(S2-SI) > ET-P 

=  P= h>

2 1 2

while F NWUE leads to E(S2-S1 ) < (a 2/).

The quantity E(S2-S1 ) is the expected residual life for an item which

is minimally repaired at its first failure. It is of interest in the evalua-

tion and planning of maintenance policies.
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Lemma 3.3.1, below, presents an upper bound of a for E(S2-S1

derived without aging assumptions of F. As is done throughout this paper

we assume that F is a continuous distribution on [0,o).

2
Lemma 3.3.1. Let X nu F and g a function on [0,o) with Eg (X) < .

Then:

JE(g(S2)-g(Sl) W <ga

where a is the standard deviation of g(X). In particular the choice

g(x) = x gives:

E(S2-S ) < a

where a is the standard deviation of X.

Proof. Eg(S 2) = E(g(X)H(X)) = Eg(X)EH(X) + OaH(X)p(g(X),H(X)) < Eg(X)+ag.

Thus E(g(S2 )-g(S ))< a . Substituting -g for g yields E(g(S )-g(S2 )) <

a from which the result follows. 0g

Corollary 3.3.1. For F NBUE, 0 2 /P < E(S 2-S1 ) < a. For F NWUE,

v < E(S2 -S1) < a.

Proof. The NBUE case follows from expression (3.3.1) and Lemma 3.3.1. The

NWUE case follows from Lemma 3.3.1 and the obvious NWUE inequality

E(S2-S1 ) >.

A function g(x) on [0,-) is defined to be starshaped if gW is
x

increasing (meaning non-decreasing). If g is non-negative and starshaped

then g is increasing.



Consider, now, a function g which is non-negative and starshaped on S

[0,c), with Pg Eg(X) < -. Define:

dF (t) = g(t)dF(t)/ .

Then: dF (t)/dFTt =1 g i(g(t)/t) which is increasing. Thus F is

larger than FT under the partial ordering of monotone likelihood ratio

(Lehmann [1959] p. 73) and is thus stochastically larger. It follows that:

(3.3.2) E[Xg(X)] > v g112 /P ,

Now assume that F is NBUE. By Lemma 2.1 and (3.3.2):

(3.3.3) Eg(S 2 ) > Eg(T) = -E(Xg(X)) > pg 2 /12

Thus for F NBUE and g non-negative and starshaped it follows from 9

Lemma 3.3.1 and (3.3.3) that:

2(3.3.4) 1
-(3.g < E(g(S 2 )-g(S)) < ag

The choice g(x) = x leads to the NBUE inequality of Corollary 3.3.1.

3.4. Higher record values. Let Sk denote the kth record value in a record

value process corresponding to F continuous. Since S k is the k th event

epoch in a non-homogeneous Poisson process with EN(t) = H(t) it follows that:
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(3.4.1) dF s(t) = [(H(t)) k-/(k-l)!]dF(t)

and also that:

(3.4.2) dF k(t) = [H(t)/k-l)]dFS kl(t), k > 2

Consequently (from 3.4.2):

(3.4.3 Eg(Sk) = (k-l)-IE[g(Sk-l)H(Sk-1 )] .

Now H(Ikl) is gamma distributed with parameters k-i and 1 (the

sum of k-i i.i.d. exponentials with parameter 1) thus ES = Var Sk_ = k-l.

Using the mean and variance of H(Skl), (3.4.3) and the upper bound for

the product moment, EUV < EUEV+u V with U = Sk V = H(S) we obtain:

EUE~aa it U= ki,' k-i

S(3.4.4) Eg (S k ) < Eg (S k-l)+(U (g(Sk-1 ))/ k-i ).

From (3.4.4) we obtain the following generalization of Lemma (3.3.1):

(3.4.5) JE[(g(S k)-g(Sk-l)]l < a(gSk-l ))//k/-i •

The case k=2 corresponds to Lemma 3.3.1. However the more general

inequality appears to be computationally useful only when k=2. For general

k a(g(Sk-l)) is no easier to compute than E(g(Sk)-g(Sk-1 )).

We have no analogue of Lemma 2.1 for F NBUE or NWUE. However if we

strengthen the restriction on F from NBUE (NWUE) to IFRA (DFRA) then we
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obtain the following:

Lemna 3.4.2. Let F be a continuous IFRA distribution, and T be a randomr

variable with distribution dFT (t) = xr-l dF(x)/r where pm is the mth

r
moment of F. Then S is stochastically larger than T and:

r r

k+r-i k k+r-l.____< Esk < ( P

Pr-l - r - k k

If F is a continuous DFRA distribution with finite (r-l)s t moment then Sr

is stochastically smaller than Tr . If in addition F has finite (k+r-l)st

moment then the above inequality reverses.

For r=2 the above inequalities hold under the weaker condition that F

is NBUE or NWUE.

Proof. Note that dFS (t)/dFT (t) = [U(t)/t -  which is Increasing as FTF

r r
is IFRA. Thus Sr  is larger than Tr under the monotone likelihood ratio

and is thus stochastically larger. Thus:

(3.4.6) ESrk > ETr = 1k+ri/Prl

Next:

Hk st k

(3.4.7) -dF > -dF

Multiply both sides of (3.4.7) by H r-/(r-l)! and integrate obtaining:

(3.4.8) (k+r- > I ESk
k - Pk r

.............
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Thus ESr < (k+rl) and this inequality and (3.4.6) yield the IFRA result.

The DFRA case similarly follows. By Lemma 2.1, for F IFRA and r=2,
st

S2 > T2 - T which is sufficient by our above derivation for (3.4.6) and

(3.4.8) to follow (with r=2) . 0

Note that the various inequalities derived above for record value

processes hold more generally for non-homogeneous Poisson processes.

3.5. A variance inequality. Consider an absolutely continuous distribution

F with failure rate function h(t) bounded above by X(h(t) < X for all t > 0).

Let S1 and S2 denote the first two record values in a record value process

corresponding to F. The failure rate function of $2-S1 evaluated at t

is a mixture of the values {h(s),s > t} and is thus bounded above by X for

all t. Consequently:

(3.5.1) E(S2-S1 ) > X-1

By Lemma 3.3.1:

(3.5.2) E(S2-S1 ) < 0

where a is the standard deviation corresponding to F. From (3.5.1) and

(3.5.2) we obtain:

(3.5.3) a2  > X-2 .

Thus among all distributions on [0,-) with failure rate bounded above

by X, the exponential distribution with parameter X has smallest variance.
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Next, consider a homogeneous Poisson process on [0,-) with intensity

X and event epochs {Ti,i > 1). Let N be a stopping time and consider the

random variable T letting h denote its failure rate function. Now:

(3.5.4) h *(t) = XPr(TN=tlTiffit, for some i) < X

Thus (3.5.3) and (3.5.4) imply:

(3.5.5) Var(T N ) < 2

Note that X-2 is the variance of T as well as the variance of

TN(t)+l' the time of the first event after time t. These event epochs have

smallest variance among all random event epochs for the Poisson process.

The inequality (3.5.5) holds for a large variety of random variables

arising in secondary processes generated by a Poisson process. These include

counter models, queues with Poisson input and uniformizable Markov chains.

Also note that if the failure rate of F is uniformly bounded above by

A, then by Lemma 3.3.1 and the argument used to derive (3.5.1):

(3.5.6) X-I < E(Sk+lSk) < k-1 /2(S k)

Thus o(Sk) > kl/ 2 - , the lower bound being achieved in the exponential case.

Thus for k > 1, the exponential distribution with parameter X minimizes

the variance of the kth record value, among all distributions with failure

rates uniformly bounded above by X. Equivalently, consider a non-homogeneous

OMN
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Poisson process with intensity function X(t) bounded above by X. Then

Var Sk > kX-2 where Sk  is the kth arrival epoch. Thus among all non-

homogeneous Poisson processes with intensity functions uniformly bounded

above by X, the homogeneous Poisson process with intensity X minimizes

the variance of Sk, for all k > 1.
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